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Part I. Linear regression
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Hypothesis function @ O

What if we have more features?e

let x, =1

h(x) = Z O;x; = 0,
i=0

How to learn this model?¢

Find a set of 8 so that h(x) is close to given examples.
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So we define the cost function:

™m

J(6) = %Z(hg(x(z’)) — (D)2,

1=1

We want to choose 8 so as to minimize J(6).

Question1. Why we choose the ordinary least squares methode
Question2. Where does the ’%’ come from?¢
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Gradient descent can converge to a local
minimum, even with the learning rate a fixed.
91 L= 9] — (¥ 30:1
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As we approach alocal  J(61)
minimum, gradient <
descent will automatically <

take smaller steps. So, no
need to decrease a over 1 2 >
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start with diff starts , end in diff ends
local optimum algorithm
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J(©) is a quadratic function—global optimum Different alpha




Batch gradient descent

K3 01 2
2 -

%(fzg() )
= (hg(x) —y) - 623- (

= (ho(x) —y),

J
Repeat until convergence {

0;:=0; +ad> " (yD — he(21D)) ;}:;i) (for every j).

Batch gradient descent
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Stochastic gradient descent @ I

Stochastic gradient descent
Loop {

for i=1 to m. {
0; :=0; + o (yD — hy(2)) ;r;i) (for every j).

1. Batch gradient descent has to scan through the enfire
fraining set before taking a single step—a costly
operation if m s large;

2. Stochastic gradient descent gets © “close” to the
minimum much faster than batch gradient descent;

3. The parameters B will keep oscillating around the
minimum of J(8);

4. Particularly when the fraining set is large, stochastic
gradient descent is often preferred over batch gradient
descent.
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Probabilistic interpretation @ S

 Why might the least-squares cost function J, be a reasonable choice?¢

« Let us assume that the target variables and the inputs are related
via the equation:

y(i) — 9T 4 G(i)?
assume that e® ~ N(0, o?).

« According to central limit theorem, for the most commonly studied scenarios,
when independent random variables are added, their sum tends toward a
normal distribution.
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Probabilistic interpretation @ S

The density of e® is given by

| 1 ()2
i)y _ ) |
p(e'") exp ( 52

-

This implies that

L 1 (1) _ gT ()2
p(y"]x":0) = exp (— y ) ) -

QTo 202




Data Mining Lab

Probabilistic interpretation @ S

likelihood function:

L) = 1[p@2;0)
i=1
R | (3@ — gT2(0))2
— exp ( ‘ )
o V2mo 202

log likelihood:

() = log L(8)
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Probabilistic interpretation @ S

Hence, maximizing £(0) gives the same answer as minimizing

1 m | o
5 Z(y(s) o QT;}:(;));?
i=1

which we recognize to be J(0), our original least-squares cost
function.

To summarize: When errors follow a Gaussian distribution,
least-squares regression can be justified as a very natural
method that’s just doing maximum likelihood estimation.

Note that, our final choice of 8 did not depend on what was o2.
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Part II. Classification and
logistic regression
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‘Classification and logistic regression f@ sRpETEE

A
(Yes) 14 X »
ha(x) = 4" x
i ?
Malignant ? Y L a
y=1
(No) 0 = e
Tumor Size Tumor Size
M WIOnE
(fes) 14 @ X X ®
I.h
Malignant ? 2%
(No) 0 < : 3
g Tumor Size




Data Mining Lab

‘Classification and logistic regression f@ sRpETEE

Classification: ﬁy =0 or 1
~ A A

hg(x) canbe>1o0r<0

A ¢

Logistic Regression: 0 < hg(:c) < 1

K_ _C__-:asgi’(‘iu&'i oa

We need a hy(x) for logistic regression.




Data Mining Lab

‘Classification and logistic regression f@ sRpETEE

Logistic Regressnon Model ” 1\ - S
Want|0 < hy(x S |+ < =
he(z) = 3(9”—":1;) 2

L)Slgmmd function g = 0 > 2

Logistic function
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‘Classification and logistic regression f@ sRpETEE

Let us assume that
Ply=1]x:0) = ho(x)

Ply=0|x;0) = 1— hg(r)
Note that this can be written more compactly as

ply | 2:0) = (ho(2))? (1 — he(x))' ™Y
Write down the likelihood of the parameters as

L) = p(7|X:0)
= TIp® ] 290

m

- H (h'e?(éf(i}))y(i) (1 — iz@(;};(i}))l_ym
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‘Classification and logistic regression f@ sRpETEE

It will be easier to maximize the log likelihood:

() = log L(#)

m

= Yy log h(z®) + (1 — y?) log(1 — h(2))

Y 1 1 G,
8—93'{(9) - (yQ(QTr) S g(QTr)) aéjQ(QTT)
1 1 P
- (yg(e’rx) — =y g(6T2) ) Y (6")(1 ~ Q(QTI)G—%QTT
’ )

Stochastic Gradient ascent rule:

Qj::E)jJra'(yU h (())) 0
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Part Ill. Generalized linear model
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In statistics, the generalized linear model (GLM) is a flexible
generalization of ordinary linear regression that allows for response
variables that have error distribution models other than a normal
distribution. The GLM generalizes linear regression by allowing the
linear model to be related to the response variable via a link
function and by allowing the magnitude of the variance of each

measurement to be a function of its predicted value.

-By Wikipedia
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The GLM consists of three elements:
1. A probability distribution from the exponential family.

2. Allinear predictorn = 8"x.

3. Alink function g such that E(Y) = u = g~ ()
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The exponential family @ P

p(y;n) = by) exp(n' T'(y) — a(n))

Here, 1) is called the natural parameter (also called the canonical param-
eter) of the distribution; 7'(y) is the sufficient statistic (for the distribu-
tions we consider, it will often be the case that T'(y) = y); and a(n) is the log
partition function. The quantity e~ essentially plays the role of a nor-
malization constant, that makes sure the distribution p(y; 7)) sums/integrates

over y to 1.
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The exponential family @ P
p(yin) = bly) exp(n' T'(y) — a(n))

P(y; ) = @¥(1 = @)Y = exp(logp¥(1 - @)'™)
= exp(yloge + (1 = y)log(1 — ¢))

@
= exp(ylog =0 + log(1 — @)

For Bernoulli distribution
b(y) =1 . . .
TGy =y Sigmoid function

= L4 = - Q
n_lﬂgl—rp;"qj_1+e—‘?
a(n) =—log(l—-¢@)=1+e™"

The logistic model is the pre probability
estimation for Bernoulli distribution.
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The exponential family @ P

p(y;n) = b(y) exp(n' T(y) — a(n))

set 02 =1

1 1 1 1
N i, 1)—Eexp(——(za n )—Eexp(——y — =12+ uy)
1

1 1
= ——=exp(—5y?)exp(uy — su*)
V2T 2 2

For Gaussian distribution

b(y) = \/;_ﬂ ezp(— ; y”)
T(y) =y
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‘Three assumptions f% WEpETEE

1.y |x; 8 ~ Exponential Family(n). l.e., given x and 8, the distribution of

y follows some exponential family distribution, with parameter n.

2. Given x, our goal is to predict the expected value of T(y) given x. In
most of our examples, we will have T(y) = y, so this means we would
like the prediction h(x) output by our learned hypothesis h to satisfy
h(x) = E[ylx].

3. The natural parameter n and the inputs x are related linearly: n = 67x.

(1) y|z; @ Exponential Family () ; {EHAzS2#0 , HEAD Ky RMEEO HIEFHENDT ;
(2) BE— =, BINEENERRE Iy (z) = E[T(y)|z);
B =6z,
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From Bernoulli distribution to logistfic regression model :

hy(z) = E[T(y)|z] = Ely|z] = p(y = 1|z;0)
=
1
1+e 7
1
1+ etz

The first equality follows from Assumption 2, above; the second
equality follows from the fact that y|x; 6 ~ Bernoulli(¢); the third
equality follows from Bernoulli distribution is an exponential

family distribution; the fourth equality follows from Assumption 3,
above.
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From Gaussian distribution to linear model:

ho(z) = E(T(y)|z) = Ely|z]

The first equality follows from Assumption 2, above; the second
equality follows from the fact that y|x; 6 ~ N(u,02), and so its
expected value is given by u; the third equality follows from
Assumption 1; and the last equality follows from Assumption 3.
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AR ERYIRETRENEHEMERD MR PHNSERERKRR , M
MSEIAERREL,

e GLM?

SIS TR IR RO R REBIE linear modelfy & |

B =P AFLERIBRETERE g™ () = E[T(y); n] 5L ERZIR
SIRIEBZSE) , NIRRT KT 2 RE nl R AYIA)RE,

- TNEMREEIRIR—MEERD T | SRIAERREL , EEE
TR T REURELFRIZNESE D (67 v RIS EI0RY.
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